Азербайджанский Медицинский Университет Кафедра биологической химии Рабочая учебная программа по предмету (sillabus)

"Утверждаю" Заведующий кафедрой биохимии проф. Азизова Г.И.

КАЛЕНДАРНО-ТЕМАТИЧЕСКИЙ ПЛАН ЛЕКЦИОННЫХ И ЛАБОРАТОРНЫХ ЗАНЯТИЙ ПО БИОЛОГИЧЕСКОЙ ХИМИИ. ВОПРОСНИК ДЛЯ ПОДГОТОВКИ К ЛАБОРАТОРНЫМ ЗАНЯТИЯМ, КОЛЛОКВИУМАМ И ЭКЗАМЕНУ

Код предмета: 2406.02

Вид предмета: Обязательный

Учебный семестр предмета: III (факультет Общественного

здравоохранения)

Кредит предмета: 5

Учебная форма предмета: Дневной

Учебный язык предмета: Азербайджанский, русский,

Преподаватели предмета: профессорско-преподавательский

состав кафедры биохимии

Контактный номер кафедры: (012) 440 80 77

E.mail: biochemistry@amu.edu.az

БАКУ - 2021

Программа по биологической химии подготовлена сотрудниками кафедры биохимии:

доц. А.А.Эюбовой, асс. У.Г. Азизовой (под общей редакцией зав. кафедрой биохимии проф. **Г.И.Азизовой**)

Программа предназначена для студентов II курса факультета общественного здравоохранения

Календарно-тематический план лабораторных занятий по биологической химии для студентов II курса факультета Общественного здравоохранения на осенний семестр 2021/2022 уч. г.

№	Темы занятий	Азерб. и русс. практикум
1.	Ознакомление с группой, правилами внутреннего распо-	
	рядка и техники безопасности. Химический состав орга-	
	низма человека. Аминокислоты – 2 ч.	
	Строение, физико-химические свойства белков и ами-	
	нокислот. Пептидная связь. Простые белки – 2 ч.	11-16
2.	<i>Лаб. работа:</i> Цветные реакции на белки и аминокислоты.	аз.пр.
	Количественное определение альбуминов в сыворотке кро-	65-66
	ви.	
	Сложные белки. Металло-, фосфо-, глико-, липопротеи-	
3.	ны — 2 ч.	
	<i>Лаб. работа:</i> Реакции на фосфо- и гликопротеины.	28-30
4.	Коллоквиум: Простые и сложные белки.	
	Строение, свойства и механизм действия ферментов – 2	
5.	ч .	
3.	<i>Лаб. работа:</i> Термолабильность, специфичность ферментов	54-58
	и влияние оптимум рН на активность ферментов.	
	Активаторы и ингибиторы ферментов. Классификация	
	ферментов. Коферменты – 2 ч.	
6.	<i>Лаб. работа</i> : Влияние активаторов и ингибиторов на ак-	58-59
	тивность амилазы. Инактивация фермента холинэстеразы	61-63
	прозерином.	
	Классификация витаминов. Структурные особенности	
7.	ряда витаминов, биологическая роль – 2 ч.	42-46
	<i>Лаб. работа:</i> Реакции на витамины B ₁ , B ₂ , B ₆ и C.	42-40
8.	Коллоквиум: Ферменты и витамины – 2 ч.	
9.	Классификация, регуляция синтеза и секреции гормонов –	
9.	2 ч.	
	Механизм действия гормонов. Внутриклеточные рецеп-	
10.	торы гормонов – 2 ч.	
	<i>Лаб. работа:</i> Реакции на адреналин, инсулин и тироксин.	48-52
11.	Коллоквиум: Гормоны.	
12.	Биохимические особенности углеводов – 2 ч.	

	<i>Лаб. работа:</i> Реакции на углеводы.	73-75
13.	Биохимические особенности липидов – 2 ч.	
	<i>Лаб. работа:</i> Реакции на липиды	78-80
14.	<u>Контрольная работа:</u> Химия углеводов и липидов – 2 ч.	
	Общие закономерности обмена веществ. Общие пути	
	катаболизма (I и II общие пути) и их биоэнергетическое	
	значение. Общие сведения о ЦПЭ	
15.	-2 y.	
	<u>Лаб. работа:</u> Определение пировиноградной кислоты в	аз.пр. 153-158
	крови. Определение активности фермента сукцинатдегидро-	155-158
	геназы.	
	Обмен углеводов, переваривание. Обмен гликогена, ре-	
16.	<i>гуляция процесса – 2 ч. Лаб. работа:</i> Количественное определение глюкозы в кро-	00 110
	ви глюкозооксидазным методом.	аз.пр. 146-148
	Гликолиз, глюконеогенез. Нарушение углеводного обме-	85-87
1.7	на – 2 ч.	05 07
17.	<i>Лаб. работа:</i> Проба на толерантность к глюкозе.	аз.пр.
		144-145
	Обмен белков. Переваривание, всасывание и гниение бел-	
	ков. Азотистый баланс — 2 ч.	
18.	<u>Лаб. работа:</u> Качественный и количественный анализ же-	64-71
	лудочного сока. Переваривание белков пепсином и трипси-	
	HOM.	
	Основные источники и использования фонда аминокис- лот. Общие пути обмена аминокислот – 2 ч.	
19.	<i>Лаб. работа:</i> Диагностическое значение определения ак-	120-121
	тивности АЛТ и АСТ.	120 121
20	Промежуточное оценивание (статическая биохимия) – 2	
20.	ч.	
	Образование аммиака, его токсическое действие, обезвре-	
21.	живание. Гликогенные, кетогенные аминокислоты -2 ч.	111-113
	<u>Лаб. работа:</u> Определение мочевины в крови.	111-113
22	Синтез и распад гемоглобина – 2 ч.	
22.	<u>Лаб. работа:</u> Определение гемоглобина в крови.	аз.пр. 66-68
	Обмен, переваривание нуклеопротеинов. Катаболизм пу-	00-08
23.	риновых нуклеотидов. Синтез пиримидиновых нуклео-	
	рановых пумевтивов. Синнез параживановых пумев-	

	тидов. Нарушение обмена нуклеопротеинов – 2 ч.	аз.пр.
	<i>Лаб. работа:</i> Определение мочевой кислоты.	264-268
24.	<u>Коллоквиум:</u> Обмен белков – 2 ч.	
	Обмен липидов: переваривание, всасывание, ресинтез и	
25.	транспорт в ткани. Обмен желчных кислот -2 ч.	аз.пр.
	<i>Лаб. работа:</i> Определение желчных кислот.	86-87
	Внутриклеточный липолиз. Катаболизм жирных кис-	
26.	лот. Кетогенез и кетолиз. Нарушение обмена липидов –	
20.	2 y.	аз.пр.
	<i>Лаб. работа:</i> Определение триглицеридов в крови.	95-97
27.	Коллоквиум: Обмен липидов – 2 ч.	
28.	Функциональная биохимия крови – 2 ч.	
	<i>Лаб. работа:</i> Определение общего белка в крови.	99-102
29.	Функциональная биохимия почек – 2 ч.	123-136
	<i>Лаб. работа:</i> Анализ нормальной и патологической мочи.	аз.пр.
	-	227-232
30.	Итоговое занятие. Оценивание темы «Органы и ткани»	
	с помощью тестов – 2 ч.	

Итого: 60 ч.

Календарно-тематический план лекционных занятий по биологической химии для студентов II курса факультета общественного здравоохранения на осенний семестр 2021/2022 уч. год.

№	Темы лекций	Кол- во часов
1.	Биохимия, цель, задачи. Физико-химические свойства белков, структурные особенности. Аминокислоты.	2
2.	Классификация белков. Простые и сложные белки. Гемоглобин, типы гетерогенности, кооперативный эффект.	2
3.	Биохимические особенности нуклеиновых кислот. Матричный биосинтез: репликация, транскрипция.	2
4.	Биохимические особенности ферментов: химическая природа, свойства, механизм действия. Классификация ферментов и коферментов. Активаторы и ингибиторы.	2
5.	Структурно-биохимические особенности витаминов, класси-	2

	фикация, механизм действия.	
6.	Гормоны, классификация, биохимические особенности. Гормоны гипоталамуса, гипофиза, щитовидной, поджелудочной железы и надпочечников.	2
7.	Общие закономерности обмена веществ. І и ІІ общие пути катаболизма. Биоэнергетическое значение. ЦПЭ.	2
8.	Химия углеводов, обмен, переваривание, всасывание. Обмен гликогена. Гликолиз. Глюконеогенез. Биохимические механизмы участия других гексоз в процессе гликолиза.	2
9.	Обмен углеводов. Апотомические окисление. Биосинтез олиго-и полисахаридов. Нарушения обмена углеводов.	2
10.	Обмен белков, переваривание, всасывание, гниение. Общие пути обмена аминокислот.	
11.	Образование аммиака, его токсическое действие и пути обезвреживания. Биосинтез заменимых аминокислот. Нарушения обмена аминокислот.	2
12.	Биохимия крови и печени. Синтез и распад гемоглобина. Образование желчных пигментов. Желтухи	2
13.	Обмен нуклеопротеинов. Метаболизм и нарушение пуриновых и пиримидиновых нуклеотидов.	2
14.	Химия липидов, обмен, переваривание, всасывание, ресинтез в кишечнике. Метаболизм жирных кислот. Кетогенез и кетолиз. Обмен холестерина. Нарушения обмена липидов.	2
15.	Функциональная биохимия органов и тканей. Почечная, мышечная, соединительная и нервная ткани.	2

Итого 30 часов.

ВОПРОСЫ КОЛЛОКВИУМОВ ПО БИОЛОГИЧЕСКОЙ ХИМИИ

Биохимическая характеристика аминокислот, Белков и нуклеиновых кислот

1. Классификация аминокислот по различным принципам (по характеру радикала, по природе заряда радикала, по полярности радикала, по числу амино- и карбоксильных групп, по биологической роли).

- 2. Строение протеиногенных и непротеиногенных аминокислот (показать на примере), их общая характеристика и роль в метаболизме.
- 3. Физико-химическая характеристика аминокислот стереоизомерия, оптическая активность, изменение заряда аминокислот в зависимости от рН среды, способность к растворимости и диссоциации, кривые титрования, изоэлектрическая точка и значение их для организма.
- 4. Химический состав белков, распространение в организме, функции, представители. Методы исследования белков: получение из биологических материалов (гомогенизация, экстракция, фракционирование), высаливание и зависимость этого процесса от ионной силы раствора. Ряд Гофмейстера. Хроматография, электрофорез, виды и принципы методов.
- 5. Физико-химические свойства белков: формы, растворимость, оптические свойства, амфотерность, изоэлектрическая точка белков. Денатурация, особенности действия денатурирующих агентов. Осаждаемость факторы, вызывающие осаждение белков, практическое применение этих реакций для определения и изучения свойств белков.
- 6. Классификация белков. Особенности структуры и функции фибриллярных белков. Коллаген аминокислотный состав, строение тропоколлагена протомера коллагена, связи, обеспечивающие прочность молекулы. Кератин распространение, α-и β- кератины, их аминокислотный состав.
- 7. Первичная структура белка, виды связи. Пространственная конфигурация белков типы связей, образующих вторичную, третичную и четвертичную структуры.
- 8. Природные пептиды группы и представители в зависимости от специфичности действия и происхождения; ангиотензин и кинины источники, схема их образования, ферменты, участвующие в образовании, их значение; глутатион, карнозин, ансерин строение, распространение, значение.

- 9. Простые белки, принцип классификации. Альбумины и глобулины; проламины и глютелины; протамины и гистоны. Изменения белковых фракций крови в организме человека (протенограмма).
- 10. Металлопротеины, представители, вид связи между металлами и белковой частью, распространение, значение. Металлоидные протеины.
- 11. Фосфопротеины: представители, распространение, тип связи между простетической группой и белковой частью. Значение процессов фосфорилирования и дефосфорилирования.
- 12. Гликопротеины и протеогликаны: представители, биологическая роль, распространение. Состав и количество углеводного компонента (примеры). Типы связей между углеводным компонентом и белком. Значимость сиаловых кислот. Диагностическое значение определения сиаловых кислот методом Гесса.
- 13. Липопротеины и протеолипиды: физико-химические свойства, распространение, локализация в организме, типы связей между белком и липидным компонентом. Типы аполипопротеинов. Структурные особенности фракций липопротеинов плазмы крови, функции.
- 14. Структурные особенности гемоглобина, гетерогенность, эффект кооперативности, эффект Бора, аллостерические регуляторы. Пробы, обнаруживающие в биологических объектах наличие примесей крови.
- 15. Формы гемоглобина: оксигемоглобин, карбоксигемоглобин, карбгемоглобин, метгемоглобин их структурные и функциональные особенности. Гемоглобинозы и гемоглобинопатии.
- 16. Миоглобин и другие представители гемпротеинов (каталаза, пероксидаза, цитохромы), их структурные и функциональные особенности.
- 17. Общая характеристика нуклеиновых кислот: пуриновые и пиримидиновые основания лактам- и лактимные формы, минорные формы и азотистые основания, не входящие в состав нуклеиновых кислот. Нуклеозиды, нуклеотиды, син- и антиконфигурации.

- 18. Первичная, вторичная и третичная структуры ДНК. Правила Чаргаффа. Образование нуклеосом и хроматина.
- 19. Основные особенности структуры разных типов РНК, формирование их вторичной и третичной структур.

Биохимическая характеристика ферментов и витаминов

- 1. Ферменты биологические катализаторы белковой природы: их отличия от неорганических катализаторов, химическая природа ферментов, рибозимы, простые и сложные ферменты.
- 2. Основные свойства ферментов: виды специфичности, термолабильность, влияние рН на активность ферментов.
- 3. Зависимость скорости ферментативных реакций от концентрации субстрата и ферментов. Константа Михаэлиса, объясняющая соответствие фермента и субстрата (показать график).
- 4. Механизм действия ферментов: понятия об активном центре, энергии активации, теория Михаэлиса-Ментена, теория Кошленда "индуцированного соответствия". Эффекты ориентации, деформации. Кислотно-щелочной, ковалентный, электрофильный, нуклеофильный катализ.
- 5. Классификация коферментов. Витаминные и невитаминные коферменты, нуклеотидные коферменты, металлопорфирины, группы металлоферментов, фосфорные эфиры моносахаридов, глутатион их биологическая роль.
- 6. Полиферментные системы: 3 типа их организации (примеры). Локализация ферментов в клеточных органоидах, органах и тканях. Изоферменты и их значение в энзимодиагностике.
- 7. Активаторы ферментов. Активаторы, влияющие на активный центр ферментов кофакторы, субстраты, ионы металлов. Активаторы, которые действуют вне активного центра путем частичного протеолиза неактивных проферментов, путем защиты сульфгидрильных групп, путем диссоциации неактивных ферментных комплексов.

- 8. Два основных типа ингибирования обратимое и необратимое. Виды ингибиторов: конкурентное, неконкурентное и бесконкурентное (привести примеры) действие на организм. Реактиваторы.
- 9. Пути внутриклеточной регуляции действия ферментов: изменение количества ферментов (индукция и репрессия), компартментализация, челночные механизмы, принцип обратной связи (ретро-ингибирование), превращение проферментов в активные ферменты, химическая модификация ферментов, аллостерическая регуляция.
- 10. Номенклатура и классификация ферментов. 6 основных классов, подклассы, подподклассы. Шифр ферментов.
- 11. Пути использования ферментов в медицине: иммобилизованные ферменты; энзимопатология, энзимодиагностика и энзимотерапия.
- 12. Витамин А: названия, особенности строения, витамеры, провитамины, метаболизм, биохимические функции, гипо- и гипервитаминозы, природные источники.
- 13. Витамин Д: названия, структурные особенности, метаболизм, образование активных гидроксилированных форм и биохимические функции, авитаминоз, гипервитаминоз, природные источники.
- 14. Витамин Е: названия, структурные особенности, витамеры, метаболизм, антиоксидантное действие, авитаминоз, природные источники.
- 15. Витамины К: названия, структурные особенности, витамеры, метаболизм, биохимические функции, нарушения баланса, природные источники. Антивитамины.
- 16. Биохимическая характеристика энзим-витаминов (назввание по физиологическому действию, обозначение латинской графикой, химическое название), классификация (по физико-химическим свойствам, по биологическому действию), витамеры, провитамины, антивитамины, нарушение баланса витаминов.

- 17. Витамин B_1 : названия, строение, метаболизм, коферменты (кокарбоксилаза), роль в обмене веществ, авитаминоз, природные источники.
- 18. Витамин B₂: названия, структурные особенности, метаболизм, коферментные формы ФМН и ФАД, их синтез, структура, биохимические функции, авитаминоз, природные источники.
- 19. Витамин B_3 (пантотеновая кислота): названия, строение, метаболизм, коферменты, биохимические функции, недостаточность, природные источники.
- 20. Витамин PP (никотиновая кислота): названия, строение, метаболизм, коферменты – НАД и НАДФ, их биосинтез, структура, биохимические функции, авитаминоз, природные источники.
- 21. Витамин B_6 : названия, витамеры, строение, метаболизм, коферменты ПАЛФ и ПАМФ, их строение, биохимические функции, авитаминоз, природные источники.
- 22. Фолиевая кислота: названия, строение, метаболизм, коферменты, биохимические функции, недостаточность, природные источники.
- 23. Витамин B_{12} : названия, химическая природа, метаболизм, коферменты, биохимические функции, недостаточность (причины и признаки), природные источники.
- 24. Витамин C (аскорбиновая кислота): названия, строение, метаболизм, биохимические функции, авитаминоз, природные источники.
- 25. Виды витаминотерапии и их значение в лечении различных болезней. Применение витаминов, коферментов и антивитаминов в медицине, как лекарственных веществ.

Биохимические особенности гормонов

- 1. Характеристика гормонов: общие сведения, номенклатура, типы классификаций.
- 2. Механизмы регуляции синтеза и секреции гормонов: принцип обратной связи, синергизм, антагонизм, пермиссивное действие.

- 3. Передача гормонального сигнала с помощью белков- рецепторов, типы гормонов в зависимости от локализации рецепторов. Понятие о G-белках и вторичных посредниках. Механизм действия гормонов с помощью аденилатциклазной, гуанилатциклазной и кальций-полифосфоинозитидной системы.
- 4. Гормоны, проникающие внутрь клетки. Внутриклеточные и внутриядерные рецепторы. Регуляция транскрипции.
- 5. Гормоны гипоталамуса: соматолиберин, кортиколиберин, гонадолиберин, пролактолиберин, тиролиберин, меланолиберин, соматостатин, пролактостатин, меланостатин, их химическая природа, действие и нарушения.
- 6. Гормоны гипофиза.
- 7. Тиреодные гормоны: их строение, включение йода, биологическое действие, метаболизм. Нарушения секреции тиреоидных гормонов.
- 8. Гормоны, участвующие в обмене кальция: паратгормон, кальцитонин, кальцитриол, их химическая природа, биологическое действие. Патология секреции: фиброзная остеохондродистрофия, тетания, спазмофилия.
- 9. Гормоны поджелудочной железы. Инсулин: химическая природа, регуляция секреции, биологическое действие на углеводный, белковый и липидный обмены. Нарушения секреции инсулина. Причины и биохимические изменения, происходящие при сахарном диабете.
- 10. Глюкагон, соматостатин и панкреатический пептид, их химическая природа и биологическое действие.
- 11. Гормоны пищеварительной системы: их химическая природа. Эйкозаноиды, их химическая природа и биологическое действие. Цитокины. Кининовая система крови.

Закономерности обмена веществ. Биологическое окисление. Общие пути катаболизма. Обмен углеводов

- 1. Общие закономерности обмена веществ. Специфические и общие пути катаболизма основных пищевых веществ. І общий путь катаболизма и его энергетическое значение.
- 2. II общий путь катаболизма: реакции цикла трикарбоновых кислот и его энергетическое значение.
- 3. Биологическое окисление и тканевое дыхание. Оксидазные (энергообеспечивающие) реакции, участвующие ферменты. Структура, функция, последовательная локализация компонентов дыхательной цепи согласно значениям редокс-потенциала. Схема переноса протонов и электронов на кислород.
- 4. Окислительное фосфорилирование. Коэффициент Р/О. Современная теория, объясняющая механизм окислительного фосфорилирования (теория Митчела). Механизм образования протонного потенциала на внутренней мембране митохондрий. Н⁺-АТФ-синтаза и АДФ-АТФ-транслоказа их структура, локализация и функция.
- 5. Регуляция тканевого дыхания и окислительного фосфорилирования: дыхательный контроль. Механизм регуляции процесса теплообразования в организме (свободное окисление, мышечная дрожь, бурый жир). Химические соединения, разобщающие процессы окисления и фосфорилирования. Гипоэнергетические состояния.
- 6. Оксигеназные реакции: моно- и диоксигеназы. Микросомальное окисление, микросомальная цепь, ее компоненты и значение. Цитохром P₄₅₀, его роль в окислении экзогенных и эндогенных субстратов.
- 7. Пероксидазные реакции, их значение. Свободнорадикальное окисление. Активные формы кислорода (супероксид анион, гидроксильный радикал, синглетный кислород). Перекисное окисление липидов. Образование малонового диальдегида, эпоксидов, кетонов, липоперекисей. Прооксиданты.
- 8. Антиоксиданты. Механизмы защиты организма от токсического действия кислорода. Ферменты, витамины и витаминоподобные вещества, обладающие антиоксидантным действием.

- 9. Переваривание углеводов: пищевые углеводы, действующие на них амилолитические ферменты слюны, поджелудочной железы и кишечного сока. Механизм всасывания, транспорта через мембраны, превращения моносахаридов в тканях.
- 10. Метаболизм гликогена. Регуляция процессов гликогеногенеза и гликогенолиза.
- 11. Реакции гликолиза и его биологическое значение. Гликолитическая оксидоредукция. Включение фруктозы и галактозы в процесс гликолиза.
- 12. Аэробный распад глюкозы и его энергетическое значение.
- 13. Глюконеогенез (схема). Субстраты глюконеогенеза. Цикл Кори.
- 14. Последовательные реакции пентозофосфатного пути распада углеводов и его биологическое значение.
- 15. Глюкоконъюгаты: виды, особенности биосинтеза олигосахаридов в организме.
- 16. Механизмы регуляции обмена углеводов. Гипо- и гипергликемия. Глюкозурия. Сахарный диабет: причины возникновения, признаки и биохимические механизмы осложнений.
- 17. Приобретенные и врожденные нарушения промежуточного обмена углеводов: фруктозурия, непереносимость к фруктозе, галактоземия, гликогенозы, гликозидозы.
- 18. Особенности метаболизма этилового спирта в организме человека.

Обмен белков и нуклеиновых кислот

- 1. Полноценность пищевых белков. Азотистый баланс. Источники и судьба аминокислотного фонда. Протеиназы тканевых белков.
- 2. Переваривание белков в желудке. Состав желудочного сока: соляная кислота, пепсин, гастриксин.
- 3. Переваривание белков в кишечнике. Состав сока поджелудочной железы, протеолитические ферменты трипсин, химотрипсин, эластаза, карбоксипептидаза. Протеиназы кишечного сока.

- 4. Гниение аминокислот в толстом кишечнике и обезвреживание продуктов гниения. ФАФС и УДФГК.
- 5. Всасывание продуктов переваривания белков из кишечника. Нарушения переваривания белков и всасывания аминокислот из кишечника. Синдром мальабсорбции.
- 6. Дезаминирование аминокислот. Биохимический механизм окислительного дезаминирования.
- 7. Трансаминирование аминокислот. Трансаминазы, их значение в диагностике заболеваний. Трансдезаминирование.
- 8. Декарбоксилирование аминокислот. Обезвреживание образующихся протеиногенных аминов.
- 9. Пути образования аммиака, его токсичное действие и обезвреживание. Синтез мочевины. Другие пути обезвреживания аммиака.
- 10. Судьба безазотистых углеводородных остатков аминокислот. Гликогенные и кетогенные аминокислоты. Синтез заменимых аминокислот.
- 11. Специфические пути обмена алифатических аминокислот (гли, сер, цис, ала, мет, арг).
- 12. Особенности обмена глутаминовой и аспарагиновой кислот и их амидов.
- 13. Специфические пути обмена ароматических и гетероциклических аминокислот (фен, тир, три, гис, про).
- 14. Приобретенные и наследственные нарушения обмена аминокислот.
- 15. Переваривание и всасывание нуклеопротеидов. Распад нуклеиновых кислот в тканях.
- 16. Распад пуриновых нуклеотидов в тканях.
- 17. Распад пиримидиновых нуклеотидов в тканях.
- 18. Биосинтез пуриновых нуклеотидов.
- 19. Биосинтез пиримидиновых нуклеотидов. Синтез дезоксирибонуклеотидов.
- 20. Нарушения обмена пуриновых и пиримидиновых оснований (подагра, ксантинурия, синдром Леша-Нихана, оротацидурия).

Обмен липидов

- 1. Переваривание жиров. Расщепление жиров и фосфолипидов в кишечнике. Липаза и фосфолипазы. Желчные кислоты, их типы, значение в переваривании.
- 2. Всасывание продуктов гидролиза жиров, ресинтез жиров в стенке кишечника и транспорт в ткани.
- 3. Внутриклеточный липолиз. Типы катаболизма жирных кислот. Катаболизм глицерина.
- 4. Реакции β-окисления жирных кислот и его энергетическое значение. Катаболизм жирных кислот с нечетным числом атомов углерода.
- 5. Биосинтез жирных кислот, регуляция процесса и источники энергии.
- 6. Особенности метаболизма ненасыщенных жирных кислот.
- 7. Кетогенез и кетолиз. Кетонемия и кетонурия. Причины возникновения.
- 8. Биосинтез триацилглицеридов и фосфолипидов. Липотропные факторы.
- 9. Синтез холестерина. Диагностическое значение определения холестерина в крови. Особенности обмена липопротеинов крови.
- 10. Нейроэндокринная регуляция обмена липидов.
- 11. Нарушения процесса переваривания, всасывания и транспорта жиров в ткани. Гиперлипемии, типы. Патология холестеринового обмена. Желчнокаменная болезнь.
- 12. Липидозы. Жировая инфильтрация и дистрофия печени. Патология жировых депо. Наследственные липидозы.

Функциональная биохимия крови

1. Функции крови. Метаболические особенности клеток крови (эритроцитов, лейкоцитов, тромбоцитов). Синтез гемоглобина. Порфирии.

- 2. Биохимический состав крови. Белки плазмы и сыворотки крови. Ферменты сыворотки крови. .
- 3. Азотистые небелковые компоненты крови: остаточный азот. Азотемии, виды.
- 4. Безазотистые органические и неорганические соединения плазмы крови. Микроэлементы.
- 5. Кислотно-щелочное равновесие крови. Буферные системы крови. Ацидоз, алкалоз.
- 6. Дыхательная функция крови, влияние внешних и внутренних факторов.
- 7. Свертывание крови. Факторы свертывания. Механизм свертывания.
- 8. Антисвертывающая система крови. Ингибиторы ферментов свертывания крови и антикоагулянтная система. Фибринолиз.

Функциональная биохимия печени

- 1. Особенности морфофункциональной структуры и кровоснабжения печени.
- 2. Участие печени в углеводном обмене.
- 3. Роль печени в липидном обмене. Состав желчи, общие свойства и значение.
- 4. Роль печени в обмене белков.
- 5. Этапы детоксикационной функции печени. Распад гемоглобина: образование желчных пигментов, их обезвреживание и выделение из организма. Желтухи, виды.
- 6. Синдромы повреждений печени.

Функциональная биохимия почек

- 1. Морфофункциональные особенности почек и механизм обраования мочи.
- 2. Особенности обмена веществ в почках.
- 3. Роль почек в регуляции кислотно-щелочного равновесия организма.

- 4. Общие свойства мочи в норме и патологии.
- 5. Нормальные химические компоненты мочи. Значение определения креатинина в моче.
- 6. Патологические компоненты мочи. Почечнокаменная болезнь.

Функциональная биохимия нервной ткани

- 1. Липиды нервной ткани и их обмен.
- 2. Химический состав углеводов нервной ткани и особенности энергообеспечения.
- 3. Химический состав и обмен белков, нейропептидов и нуклеиновых кислот в нервной ткани.
- 4. Биохимические механизмы возникновения и передачи нервных импульсов.
- 5. Роль медиаторов в передаче нервного возбуждения. Холинергические и адренергические рецепторы.
- 6. Биохимические механизмы памяти.

Функциональная биохимия мышечной ткани

- 1. Химический состав мышечной ткани. Белки мышц.
- 2. Небелковые азотистые экстрактивные вещества мышц, их значение. Безазотистые органические соединения мышц.
- 3. Особенности химического состава сердечной мускулатуры и гладких мышц.
- 4. Источники энергообеспечения мышечной деятельности.
- 5. Биохимические механизмы сокращения мышц.
- 6. Биохимические изменения, происходящие в мышцах при патоогиях и повреждениях мышц.

Биохимия соединительной ткани

1. Общие сведения о соединительной ткани: функции, основные клетки.

- 2. Основные белки межклеточного матрикса соединительной тка-и: коллаген, эластин.
- 3. Неколлагенные белки соединительной ткани.
- 4. Глюкозаминогликаны и протеогликаны соединительной ткани.

ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЛАБОРАТОРНЫМ ЗАНЯТИЯМ

II ЗАНЯТИЕ

Строение, физико-химические свойства белков и аминокислот. Пептидная связь. Простые белки

- 1. Общие сведения о белках, состав структурные единицы, молекулярная масса.
- 2. Функции белков.
- 3. Строение протеиногенных аминокислот.
- 4. Пептидная связь.
- 5. Цветные реакции на белки и аминокислоты.
- 6. Классификация белков. Простые и сложные белки.
- 7. Типы простых белков.
- 8. Количественное определение альбуминов в сыворотке крови (лаб. раб.).

III ЗАНЯТИЕ

Сложные белки. Металло-, фосфо-, глико-, липопротеины

- 1. Классификация сложных белков.
- 2. Металло-, фосфопротеины. Получение казеиногена из молока (лаб. раб.).
- 3. Типы гликопротеинов.
- 4. Биологическая роль гликопротеинов. Выделение муцина из слюны, реакция Подобедова-Молиша (лаб. раб.).
- 5. Структурные особенности липопротеинов, биологическая роль.

V3AHЯТИЕ

Строение, свойства и механизм действия ферментов

- 1. Понятие о ферментах.
- 2. Свойства ферментов: термолабильность. Зависимость активности фермента от среды рН.
- 3. Специфичность ферментов.
- 4. Определение оптимума температуры и оптимума рН для амилазы слюны. Определение специфичности амилазы слюны и сахаразы (лаб. раб.).
- 5. Механизм действия ферментов.
- 6. Единицы активности ферментов.

VI ЗАНЯТИЕ

Активаторы и ингибиторы ферментов. Классификация ферментов. Коферменты

- 1. Активаторы ферментов. Действие активаторов и ингибиторов на активность амилазы (лаб. раб.).
- 2. Ингибиторы ферментов, типы. Инактивация фермента холинэстеразы прозерином (лаб. раб.).
- 3. Классификация ферментов.
- 4. Металлоферменты.
- 5. Классификация коферментов.

VII ЗАНЯТИЕ

Классификация витаминов. Структурные особенности ряда витаминов, биологическая роль

- 1. Общие сведения о витаминах. Провитамины, антивитамины.
- 2. Структурно-биохимические особенности, функции витаминов B_1 и B_2 .
- 3. Структурно-биохимические особенности, функции витаминов B_5 и B_6 .
- 4. Структурно-биохимические особенности, функции витаминов B_9 и B_{12} .
- 5. Структурно-биохимические особенности, функции витамина С.
- 6. Качественные реакции и количественное определение витамина С в экстракте шиповника (лаб. раб.).
- 7. Качественные реакции на витамины группы В $(B_1,B_2,B_5,B_6,)$ (лаб. раб.).

ІХ ЗАНЯТИЕ

Классификация, регуляция синтеза и секреции гормонов

- 1. Общие сведения об эндокринной системе. Специфические особенности гормонов.
- 2. Классификация гормонов, основанная на разных принципах.
- 3. Механизмы регуляции синтеза и секреции гормонов.
- 4. Типы взаимосвязей между функциями эндокринных желез и их действие друг на друга.
- 5. Рецепторы гормонов.

Х ЗАНЯТИЕ

Механизм действия гормонов.

Внутриклеточные рецепторы гормонов

- 1. Механизм действия гормонов.
- 2. Аденилатциклазная система.
- 3. Гуанилатциклазная система.
- 4. Система кальций-полифосфоинозитол.
- 5. Механизм действия гормонов, действующих через внутриклеточные рецепторы.
- 6. Минералокортикоиды и глюкокортикоиды.
- 7. Качественные реакции на инсулин. Обнаружение йода в тиреоидине (лаб. раб.).
- 8. Качественные реакции на адреналин (лаб. раб.).

ХІІ ЗАНЯТИЕ

Биохимические особенности углеводов

- 1. Сведения об углеводах, биологическое значение, классификация.
- 2. Моносахариды, классификация и строение.
- 3. Свойства моносахаридов: восстановительная эпимеризация. Сахарные кислоты, типы. Продукты восстановления, значение. Реакции на моносахариды (лаб. раб.).
- 4. Представители олигосахаридов, значение, восстановительные свойства. Реакции на дисахариды (лаб. раб.).
- 5. Представители полисахаридов, химическая природа, значение. Гидролиз крахмала (лаб. раб.).
- 6. Представители гетерополисахаридов, значение.

ХІІІ ЗАНЯТИЕ

Биохимические особенности липидов

- 1. Сведения о липидах, биологическое значение, классификация, основанная на разных принципах.
- 2. Простые липиды свойства, биохимические особенности жирных кислот. Витамин F. Эмульгирование жиров (лаб. раб.).
- 3. Сложные липиды, классификация. Строение, значение глицерофосфолипидов.
- 4. Типы сфинголипидов: сфингофосфолипиды и сфингогликолипиды, их строение, значение.
- 5. Стерины и стериды, строение, значение. Реакции на холестерин (лаб. раб.).
- 6. Определение ненасыщенных жирных кислот (лаб. раб.).

XV ЗАНЯТИЕ

Общие закономерности обмена веществ. Общие пути катаболизма (I и II общие пути) и их биоэнергетическое значение. Общие сведения о ЦПЭ

- 1. Катаболизм основных пищевых веществ. Общие закономерности обмена веществ.
- 2. І общий путь катаболизма и его энергетическое значение.
- 3. ІІ общий путь катаболизма и его энергетическое значение.
- 4. Общие сведения о цепи переноса электронов.
- 5. Определение в крови пировиноградной кислоты. Определение активности фермента сукцинатдегидрогеназы (лаб. раб.).

XVI ЗАНЯТИЕ

Обмен углеводов, переваривание. Обмен гликогена, регуляция процесса

- 1. Переваривание углеводов в ротовой полости. Состав и свойства слюны.
- 2. Переваривание углеводов в кишечнике.
- 3. Синтез гликогена.
- 4. Распад гликогена.

- 5. Регуляция обмена углеводов.
- 6. Количественное определение глюкозы в крови глюкозооксидазным методом (лаб. раб.).

XVII ЗАНЯТИЕ

Гликолиз, глюконеогенез. Нарушение обмена углеводов

- 1. Этапы гликолиза, значение.
- 2. Сведения об аэробном гликолизе.
- 3. Схема, субстраты глюконеогенеза.
- 4. Цикл Кори.
- 5. Врожденные и приобретенные нарушения обмена углеводов.
- 6. Проба на толерантность к глюкозе.

XVIII ЗАНЯТИЕ

Обмен белков. Переваривание, всасывание, гниение белков. Азотистый баланс

- 1. Ценность пищевых белков. Азотистый баланс.
- 2. Переваривание белков в желудке. Состав желудочного сока.
- 3. Переваривание белков в тонком кишечнике.
- 4. Всасывание продуктов переваривание белков из кишечника.
- 5. Гниение белков в кишечнике и обезвреживание продуктов гниения.
- 6. Переваривание белков пепсином и трипсином.

ХІХ ЗАНЯТИЕ

Основные источники и использование фонда аминокислот. Общие пути обмена аминокислот

- 1. Основные источники и пути использования аминокислотного фонда в клетке.
- 2. Общие пути обмена аминокислот. Дезаминирование: виды.
- 3. Трансаминирование.
- 4. Клиническое значение определения активности трансаминаз в крови. Принцип определения активности АЛТ и АСТ в крови (лаб. раб.).
- 5. Декарбоксилирование. Образование биогенных аминов и их обезвреживание.

ХХІ ЗАНЯТИЕ

Образование аммиака, его токсическое действие, обезвреживание. Гликогенные, кетогенные аминокислоты

- 1. Пути образования аммиака в тканях.
- 2. Токсичность аммиака.
- 3. Пути обезвреживания аммиака.
- 4. Образование мочевины.
- 5. Определение мочевины в крови (лаб. раб.).
- 6. Кетогенные и гликогенные аминокислоты.

ХХІІ ЗАНЯТИЕ

Синтез и распад гемоглобина

- 1. Обмен железа в организме.
- 2. Биосинтез гемоглобина.
- 3. Генетические нарушения синтеза гемоглобина. Принцип определения гемоглобина в крови (лаб. раб.).
- 4. Распад гемоглобина в тканях.
- 5. Судьба желчных пигментов в кишечнике.
- 6. Желтухи.

ХХІІІ ЗАНЯТИЕ

Обмен, переваривание нуклеопротеинов. Катаболизм пуриновых нуклеотидов. Синтез пиримидиновых нуклеотидов. Нарушение обмена нуклеопротеинов

- 1. Переваривание нуклеиновых кислот.
- 2. Катаболизм пуриновых нуклеотидов.
- 3. Определение в крови мочевой кислоты (лаб. раб.).
- 4. Синтез пиримидиновых нуклеотидов.
- 5. Нарушение обмена пуринов и пиримидинов.

XXV ЗАНЯТИЕ

Обмен липидов: переваривание, всасывание, ресинтез и транспорт в ткани. Обмен желчных кислот

1. Ферменты, участвующие в переваривании липидов.

- 2. Роль желчных кислот в переваривании липидов.
- 3. Всасывание и ресинтез продуктов гидролиза липидов в стенке кишечника.
- 4. Транспорт пищевых липидов в ткани. Хиломикроны.
- 5. Определение желчных кислот в крови (лаб. раб.).
- 6. Нарушения переваривания, всасывания и транспорта липидов.

XXVI ЗАНЯТИЕ

Внутриклеточный липолиз. Катаболизм жирных кислот. Кетогенез и кетолиз. Нарушение обмена липидов

- 1. Внутриклеточный липолиз. Мобилизация липидов из жировых депо.
- 2. Типы катаболизма жирных кислот. β-окисление.
- 3. Кетогенез и кетолиз.
- 4. Определение триацилглицеридов в крови (лаб. раб.).
- 5. Жировая инфильтрация и дистрофия печени.

XXVIII ЗАНЯТИЕ

Функциональная биохимия крови

- 1. Метаболические особенности форменных элементов крови.
- 2. Белки плазмы крови.
- 3. Определение общего белка в крови (лаб. раб.).
- 4. Ферменты сыворотки крови.
- 5. Низкомолекулярные азотистые соединения крови.
- 6. Безазотистые соединения плазмы крови.

ХХІХ ЗАНЯТИЕ

Функциональная биохимия почек

- 1. Диурез в норме.
- 2. Цвет мочи, мутность.
- 3. рН мочи и ее определение (лаб. раб.). Удельный вес мочи, определение (лаб. раб.).
- 4. Органические и неорганические компоненты мочи. Определение витамина С (лаб. раб.).
- 5. Патологические компоненты мочи. Определение в моче кетоновых тел (лаб. раб.).

- 6. Определение пигментов крови в моче (лаб. раб.).
- 7. Определение белка и сахара в моче (лаб. раб.).

ПРАВИЛА ПРОВЕДЕНИЯ КОЛЛОКВИУМОВ

Цель занятия: С помощью индивидуального опроса студентов выявить степень усвоения материала.

Педагог вызывает 4 студента для опроса. На листе студент отмечает число, фамилию и номер билета.

В билете 4 вопроса, каждый из которых оценивается в 2,5 балла: 3 вопроса для коллоквиуме, 1 ситуационная задача. Если студент не напишет структуры и схемы, имеющиеся в билете, но даст устный ответ, то этот вопрос оценивается максимум в 1 балл. Текст ответа писать не требуется.

При сдаче коллоквиума, прежде всего, обращается внимание на знание основных моментов и степень усвоения материала. Преподаватель согласно календарно-тематическому плану, даёт задание на следующее занятие.

ТЕМЫ ПРЕЗЕНТАЦИЙ

Преподаватель для каждой группы в индивидуальном порядке предоставляет темы презентаций.

ЛИТЕРАТУРА

- 1. Березов Т.Т., Коровкин Б.Ф. «Биологическая химия», М., 1990.
- 2. Гасанова Ш.И., Азизова Г.Ш. Биохимия (пособие для поступающих в резидентуру). 2018.
- 3. Комов В.П., Шведова В.Н. Биохимия. М.: Дрофа, 2004, 638 с.
- 4. Северин Е.С. «Биологическая химия», М., 2000.
- 5. Эфендиев А.М., С.А.Джавадов С.А., Бехбудова З.А., Азимова З.Я. Руководство к лабораторным занятиям по биологической химии. Учебное пособие. Баку, 1995.
- 6. Əfəndiyev A.M., Islamzadə F.Q., Qarayev A.N., Eyyubova A.Ə. "Bioloji kimyadan laboratoriya məşğələləri" (dərs vəsaiti). Bakı, 2015-ci il.
- 7. Islamzadə F.I., Əfəndiyev A.M., Islamzadə F.Q. Insan biokimyasının əsasları (dərslik, I cild). Bakı, 2015-ci il.

- 8. Islamzadə F.I., Islamzadə F.Q., Əfəndiyev A.M. Insan biokimyasının əsasları (dərslik, II cild). Bakı, 2015-ci il.
- 9. Лекционный материал.